Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Николаевич Министерство науки и высшего образования РФ Должность: врио ректора

дата подписания: 04.10.2023 16 Ф ТОБОУ ВО «Гверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель,ООП

/ АВ Язенин /

«<u>В</u>» <u>февраня</u> 2020 года

Рабочая программа дисциплины (с аннотацией)

ТЕОРИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ

Направление подготовки 01.03.02 ПРИКЛАДНАЯ МАТЕМАТИКА И ИНФОРМАТИКА

Профиль подготовки Системный анализ

Для студентов 3-го курса Форма обучения – очная

Составитель:

к.ф.-м.н., доцент И.В. Захарова

Тверь, 2020

І. Аннотация

1. Цель и задачи дисциплины

Целью освоения дисциплины является изложение основных сведений о построении и анализе моделей, учитывающих случайные факторы.

Задачами освоения дисциплины являются:

- Освоение фундаментальных понятий теории случайных процессов;
- Умение анализировать информацию о случайных процессах и применять на практике фундаментальные знания, в частности, вероятностные и статистические методы при постановке и решении профессиональных задач.

2. Место дисциплины в структуре ООП

Данная дисциплина относится к разделу «Математический» обязательной части Блока 1.

Для успешного усвоения курса необходимы знания основных понятий из математического анализа, линейной алгебры и дифференциальных уравнений, теории вероятностей и математической статистики, а также навыки решения основных задач, рассматриваемых в этих дисциплинах.

Данная дисциплина необходима для изучения дисциплины «Методы и алгоритмы оценивания параметров случайных процессов».

3. Объем дисциплины: 2 зачетных единицы, 72 академических часов, в том числе:

контактная аудиторная работа: лекции 32 часа, в т.ч. практическая подготовка 4 часа, практические занятия 16 часов, в т.ч. практическая подготовка 2 часа;

контактная	внеаудиторная	работа:	контроль	самостоятельной	работы		
самостоятел	ьная работа: 24 ч	асов, в тог	м числе ко	нтроль 0 часов.			

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения образовательной программы (формируемые компетенции)	Планируемые результаты обучения по дисциплине		
Указывается код и	Приводятся индикаторы достижения компетенции в		
наименование компетенции	соответствии с учебным планом		
ОПК-1 Способен применять	ОПК-1.1 Обладает базовыми знаниями, полученными в		
фундаментальные знания,	области математических и (или) естественных наук		
полученные в области	ОПК-1.2 Использует базовые знания в области		
математических и (или)	математических и естественных наук в профессиональной		
естественных наук, и	деятельности, вносит некоторые коррективы при их		
использовать их в	использовании в профессиональной деятельности		
профессиональной	ОПК-1.3 Применяет и адаптирует фундаментальные понятия		
деятельности	и результаты в области математических и естественных наук		
	к решению задач профессиональной деятельности		

- 5. Форма промежуточной аттестации и семестр прохождения зачет, 6 семестр.
 - 6. Язык преподавания русский.

П. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Учебная	Всего		Контактная работа (час.)					
программа –	(час.)	Ле	екции	Практические		Контроль	ельная	
наименование				занятия		самостояте	работа, в	
разделов и тем						льной	том числе	
						работы (в	Контроль	
		Всего	В т.ч.	Всего	В т.ч.	том числе	(час.)	
			практич		практи	курсовая		
			еская		ческая	работа)		
			подгото		подгот			
			вка		овка			

Случайная	10	4	0	2	0	 4
l	10					
распределение.						
Предмет теории						
случайных						
процессов.						
Случайная						
функция и ее						
распределение.						
Конечномерные						
сечения, набор						
конечномерных						
распределений.						
Свойства						
конечномерных						
распределений,						
теорема						
Колмогорова.						
Классификация	8	4	0	2	0	 2
случайных						
функций.						
Классификация						
случайных						
функций по						
пространству						
параметров.						
Классификация						
случайных						
функций по						
множеству						
значений.						
Классификация						
случайных						
функций по типу						
зависимости.						
Стандартные	9	4	4	3	2	 2
модели		_ T]		 2
процессов.						
1 -						
Процесс						
однородного случайного						
1 -						
блуждания.						
Процесс Пуассона.						
Винеровский						
процесс (процесс						
броуновского						
движения).						
Сложный процесс						
Пуассона.						
Процесс						
Орнштейна-						
Уленбека.						

Элементы	7	4	0	2	0	 1
случайного						
анализа.						
Сходимость по						
вероятности и в						
среднем						
квадратическом.						
Случайные						
процессы,						
непрерывные в						
среднем						
квадратическом.						
Случайные						
процессы,						
дифференцируемы						
е в среднем						
квадратическом.						
Интеграл Римана от						
случайной						
функции и его						
свойства.						
Числовые	6	0	0	3	0	 3
характеристики						
случайных						
процессов.						
Математическое						
ожидание						
случайного						
процесса.						
Дисперсионная						
функция						
случайного						
процесса.						
Корреляционная						
функция и ее						
свойства. Частная						
корреляционная						
функция.						

Стохастический	10	4	0	2	0	 4
интеграл от	10	T				 T
неслучайной						
функции.						
Стохастическая						
ортогональная мера						
и ее свойства.						
Белый шум.						
Стохастический						
интеграл от						
простой функции и						
его свойства.						
Стохастический						
интеграл от						
неслучайной						
функции и его						
свойства.						
Линейные	8	4	0	2	0	 2
стохастические	0	7				 2
ДУ.						
Стохастический						
дифференциал.						
Линейные						
стохастические ДУ.						
Процесс						
Орнштейна-						
Уленбека как						
решение линейного						
стохастического						
ДУ.						
Спектральное	6	4	0	0	0	 2
разложение		·				_
стационарных						
процессов.						
Случайное						
блуждание с						
дискретным						
спектром.						
Случайное						
блуждание с						
непрерывным						
спектром.						
Спектральное						
разложение						
стационарного в						
широком смысле						
случайного						
процесса.						
продосов.		L	L	l		

Ступайни м	4	2	0	0	0	2
Случайные	4	2		0		
процессы в						
линейных						
системах.						
Линейные системы.						
Условия						
устойчивости и						
принцип						
физической						
осуществимости.						
Белый шум и его						
свойства.						
Линейное						
преобразование						
белого шума.						
Преобразование						
Фурье белого						
шума.						
Спектральное						
представление						
линейного						
преобразования						
белого шума.						
Линейное						
преобразование						
стационарных						
случайных						
процессов.						
Фильтр низких						
частот. Фильтр						
высоких частот.	4	-			0	
Наилучшие	4	2	0	0	0	 2
линейные						
оценки.						
Наилучшая						
линейная оценка.						
Лемма о						
перпендикуляре.						
Линейная						
интерполяция.						
Линейная						
экстраполяция						
(линейный						
прогноз).						
Линейная						
фильтрация.						
Решение задачи						
прогноза для						
стационарных						
последовательност						
ей.	70	20	<u> </u>	1.0		24
ИТОГО	72	32	4	16	2	 24

III. Образовательные технологии

Учебная программа — наименование разделов и тем (в строгом соответствии с разделом II РПД)	Вид занятия	Образовательные технологии
Случайная функция и ее распределение	Лекции, практические занятия	 Изложение теоретического материала Решение задач
Классификация случайных функций	Лекции, практические занятия	 Изложение теоретического материала Решение задач
Стандартные модели процессов	Лекции, практические занятия	 Изложение теоретического материала Решение задач
Элементы случайного анализа	Лекции, практические занятия	 Изложение теоретического материала Решение задач
Числовые характеристики случайных процессов	Лекции, практические занятия	Изложение теоретического материала Решение задач
Стохастический интеграл от неслучайной функции	Лекции, практические занятия	Изложение теоретического материала Решение задач
Линейные стохастические ДУ	Лекции, практические занятия	Изложение теоретического материала Решение задач
Спектральное разложение стационарных процессов	Лекции	 Изложение теоретического материала Решение задач
Случайные процессы в линейных системах	Лекции	Изложение теоретического материала Решение задач
Наилучшие линейные оценки	Лекции	 Изложение теоретического материала Решение задач

Преподавание учебной дисциплины строится на сочетании лекций, практических занятий и различных форм самостоятельной работы студентов. В процессе освоения дисциплины используются следующие образовательные технологии, способы и методы формирования компетенций: традиционные лекции, практические занятия в диалоговом режиме, выполнение индивидуальных заданий в рамках самостоятельной работы.

Дисциплина предусматривает выполнение контрольных работ, письменных домашних заданий.

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

Для проведения текущей и промежуточной аттестации:

- ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности
- ОПК-1.1 Обладает базовыми знаниями, полученными в области математических и (или) естественных наук
 - 1. Пуассоновский поток заявок, его свойства. Примеры поток с возможной нестационарностью, неординарностью, возможным последействием.
 - 2. Числовые характеристики случайных процессов.
 - 3. Наилучшие линейные оценки для случайных процессов. Какие 3 задачи о наилучшей линейной оценке для случайного процесса существуют? В чем разница?
 - 4. Винеровский процесс, его основные свойства.
 - 5. Сходимость по вероятности, почти наверное, в среднем квадратическом. Способ проведения – письменный.

Критерии оценивания:

Дан правильный развернутый ответ – 2 балла;

Ответ содержит неточности – 1 балл.

- ОПК-1.2 Использует базовые знания в области математических и естественных наук в профессиональной деятельности, вносит некоторые коррективы при их использовании в профессиональной деятельности
- 1. Найти числовые характеристики случайного процесса $y(t) = V \cos(\psi t \theta)$ V и θ независимые случайные величины. V имеет характеристики m_V , σ_V . Случайная величина θ равномерно распределена в $(0, 2\Pi)$, ψ неслучайный параметр.
 - 2. Стационарная последовательность $\{\xi_n\}$ имеет спектральную плотность $f(\lambda) = |5-\ell^{-i\lambda}|^2$. Найти оптимальный линейный прогноз на один шаг вперед.

Способ проведения – письменный.

Критерии оценивания:

Задача решена полностью - 6 баллов;

Задача содержит неточности и незначительные ошибки - 4 балла;

Решение содержит грубые ошибки - 2 балла.

ОПК-1.3 Применяет и адаптирует фундаментальные понятия и результаты в области математических и естественных наук к решению задач профессиональной деятельности

- 1. Построить семейство реализаций случайного процесса $\varsigma(t) = x \ell^{-t}, \quad t \ge 0$, x-непрерывная случайная величина, имеющая равномерное распределение в интервале (-1,1).
- 2. Построить семейство реализаций случайного процесса $\varsigma(t) = \ell^{-tx}, \quad t \ge 0$, x случайная величина, принимающая только положительные значения.

Способ проведения – письменный.

Критерии оценивания:

Задача решена полностью - 6 баллов;

Задача содержит неточности и незначительные ошибки - 4 балла;

Решение содержит грубые ошибки - 2 балла.

V. Учебно-методическое и информационное обеспечение дисциплины

- 1) Рекомендуемая литература
 - а) Основная литература
- 1. Кацман Ю. П. Теория вероятностей, математическая статистика и случайные процессы: учебник. Томск: Издательство Томского политехнического университета, 2013. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=442107
- 2. Маталыцкий М.А. Теория вероятностей, математическая статистика и случайные процессы [Электронный ресурс] : учеб. пособие / М.А. Маталыцкий, Г.А. Хацкевич. Минск: Выш. шк., 2012. 720 с.: ил. ISBN

- 978-985-06-2105-4. [Электронный ресурс]. Режим доступа: http://znanium.com/go.php?id=508401
- 3. Аркашов Н. С. Теория вероятностей и случайные процессы /Н.С. Аркашов, А.П. Ковалевский. Новосибирск : Новосибирский государственный технический университет (НГТУ), 2014. 238 с. [Электронный ресурс]. ISBN 9785778223820. Режим доступа: http://znanium.com/go.php?id=546213

б) Дополнительная литература

- 1. Лубенцова Е.В. Системы управления с динамическим выбором структуры, нечеткой логикой и нейросетевыми моделями : монография / Е.В. Лубенцова. Ставрополь : СКФУ, 2014. 248 с. : ил. Библиогр. в кн. ISBN 978-5-88648-902-6 ; [Электронный ресурс]. —Режим доступа: http://biblioclub.ru/index.php?page=book&id=457413
- 2. Программное обеспечение

Компьютерный класс	Перечень программного обеспечения (со				
факультета	свободными лицензиями): Adobe Acrobat Reader				
прикладной	DC, Anaconda3 2019.07 (Python 3.7.3 64-bit), Apache				
математики и	Tomcat 8.0.27, Cadence SPB/OrCAD 16.6, GlassFish				
кибернетики № 4б	Server Open Source Edition 4.1.1, Google Chrome,				
(170002, Тверская	IntelliJ IDEA, IIS 10.0 Express, Java SE Development				
обл., г.Тверь, Садовый	Kit 8 Update 191 (64-bit), JetBrains PyCharm				
переулок, д.35)	Community Edition 2019.2.1, Kaspersky Endpoint				
	Security для Windows, Lazarus 2.0.12, MiKTeX,				
	NetBeans IDE 8.2, Notepad++ (64-bit x64),				
	ONLYOFFICE Desktop Editors 7.1 (x64), Origin 8.1				
	Sr2, Python 3.10.7, R for Windows 3.6.1, RStudio				
	Desktop, Visual Studio Community 2022, VLC media				
	player, WinDjView 2.1, Unreal Commander v3.57x64				
Компьютерный класс	Перечень программного обеспечения (со				
№2 факультета ПМиК	свободными лицензиями): Adobe Acrobat Reader				
№ 249	DC, Google Chrome, Kaspersky Endpoint Security				
(170002, Тверская	для Windows, ONLYOFFICE Desktop Editors 7.1				
обл., г.Тверь, Садовый	(x64), Python 3.10.7, R for Windows 3.6.1, RStudio				
переулок, д.35)	Desktop, Visual Studio Community 2022, VLC media				
	player,				
	Unreal Commander v3.57x64				

- 3. Современные профессиональные базы данных и информационные справочные системы
- 1. **36C «ZNANIUM.COM»** <u>www.znanium.com</u>;
- 2. ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/;
- 3. ЭБС «Лань» http://e.lanbook.com.
- 4. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
 - Сайт поддержки учебного процесса по дисциплине: http://prog.tversu.ru
 - Виртуальная образовательная среда ТвГУ (http://moodle.tversu.ru)
 - Научная библиотека ТвГУ (http://library.tversu.ru)
 - Сайт ТвГУ (<u>http://university.tversu.ru</u>)
 - VI. Методические материалы для обучающихся по освоению

дисциплины

Учебное пособие:

Хохлов Ю.С., Захарова И.В. Теория случайных процессов //ФГБОУ ВО «Тверской государственный университет». Тверь: Твер. гос. ун-т, 2015.

В итоге проводятся 3 контрольных мероприятия, распределение баллов между которыми составляет 30/30/40. Контрольные работы проводятся в письменной форме.

Вопросы к зачету

1. Случайная функция. Конечномерные распределения и их свойства.

Теорема Колмогорова о системе конечномерных распределений.

- 2. Классификация случайных функций.
- 3. Стандартные модели: случайное блуждание, процесс Пуассона, сложный процесс Пуассона, винеровский процесс.
- 4. Сходимость и непрерывность в среднем квадратическом. Критерии сходимости и непрерывности в среднем квадратическом.
- 5. Дифференцируемость в среднем квадратическом. Интеграл Римана и его свойства.
- 6. Стохастический интеграл от неслучайных функций. Свойства стохастического интеграла
- 7. Линейные стохастические дифференциальные уравнения

- 8. Корреляционная функция и ее свойства. Теорема Бохнера Хинчина. Частная корреляционная функция.
- 9. Спектральное разложение стационарных процессов.
- 10. Линейные процессы в линейных процессах. Белый шум.
- 11. Линейное преобразование белого шума. Преобразование Фурье белого шума. Спектральное представление линейного преобразования белого шума.
- 12. Линейное преобразование стационарных случайных процессов.
- 13. Наилучшие линейные оценки для случайных процессов. 3 задачи о наилучшей линейной оценке для случайного процесса.
- 14. Решение задачи прогноза для стационарных случайных последовательностей.
- 15. Линейная фильтрация.

Примерные задачи для зачета

- 1. Найти числовые характеристики случайного процесса
- $\zeta(t) = e^{-Xt}, \quad t > 0, \quad \text{где} \quad X \quad \quad \text{случайная} \quad \text{величина,} \quad \text{распределенная} \quad \text{по }$ показательному закону с параметром λ .
- 2. Найти числовые характеристики случайного процесса
- $y(t) = V \cos(\psi t \theta)$. V и θ независимые случайные величины.
- V имеет характеристики m_{ν} , σ_{ν} . Случайная величина θ равномерно распределена в $(0, 2\Pi)$, ψ неслучайный параметр.
- 3. Стационарная последовательность $\{\xi_n\}$ имеет спектральную плотность $f(\lambda) = |5 \ell^{-i\lambda}|^2$. Найти оптимальный линейный прогноз на один шаг вперед.
- 4. Ковариационная функция процесса $\xi(t)$ имеет вид $R(t) = D\ell^{-\alpha|t|}(1+\alpha|t|)$, где D>0 и $\alpha>0$. Найти спектральную плотность
- 5. Доказать стационарность случайной последовательности $\eta_n = a_0 \, \varsigma_n + a_1 \, \varsigma_{n-1}, n \in \mathbb{Z}$, где $\{\varsigma_n\}$ центрированный белый шум. Найти ее спектральную плотность.

Вариант 1

- 6. Найти числовые характеристики случайного процесса $\varsigma(t) = e^{-X t}$, t > 0, где X cлучайная величина, распределенная по показательному закону c параметром λ .
- 7. Найти числовые характеристики случайного процесса $y(t) = V \cos(\psi t \theta)$. V и θ независимые случайные величины. V имеет характеристики m_V , σ_V . Случайная величина θ равномерно распределена в $(0, 2\Pi)$, ψ неслучайный параметр.
- 8. Построить семейство реализаций случайного процесса $\varsigma(t) = x \ell^{-t}, \quad t \ge 0, \ x$ непрерывная случайная величина, имеющая равномерное распределение в
 интервале (-1, 1).

- 1. Построить семейство реализаций случайного процесса $\varsigma(t) = \ell^{-tx}, \quad t \ge 0$, x случайная величина, принимающая только положительные значения.
- 2. Определить математическое ожидание и дисперсию случайного процесса $\varsigma = At\sin(t+\beta)$, где A и β независимые случайные величины, M(A) = 1, D(A) = 2, β равномерно распределена на отрезке $[-\Pi,\Pi]$.
- 3. Задана корреляционная функция $K_x(t,s) = \ell^{-(t-s)^2}$ случайного процесса x(t) . Найти корреляционную функцию его производной.

Вариант 3

- 1. Стационарная последовательность $\{\xi_n\}$ имеет спектральную плотность $f(\lambda) = |5 \ell^{-i\lambda}|^2$. Найти оптимальный линейный прогноз на один шаг вперед.
- 2. Ковариационная функция процесса $\xi(t)$ имеет вид $R(t) = D\ell^{-\alpha|t|}(1+\alpha|t|)$, где D>0 и $\alpha>0$. Найти спектральную плотность
- 3. Доказать стационарность случайной последовательности $\eta_n = a_0 \, \varsigma_n + a_1 \, \varsigma_{n-1}, n \in \mathbb{Z}$, где $\{\varsigma_n\}$ центрированный белый шум. Найти ее спектральную плотность.

- 1. Случайный процесс x(t), $-\infty < t < +\infty$, задан формулой $\varsigma(t) = A\cos(\varsigma t + 2\beta)$, где A и β независимые случайные величины, M(A) = 4, D(A) = 3, β равномерно распределена на отрезке $[0,\Pi]$. Найти математическое ожидание и дисперсию случайного процесса.
- 2. Заданы математическое ожидание $m_x(t) = 4t^3$ и корреляционная функция $K_x(t,s) = 3\ell^{-4|s-t|}$ случайного процесса x(t). Найти математическое ожидание и корреляционную функцию интеграла $y(t) = \int_0^t x(s) ds$.
- 3. Случайный процесс x(t), $-\infty < t < +\infty$, задан формулой $\varsigma(t) = A \sin(t + \Pi \beta)$, где A и β независимые случайные величины, M(A) = 1, D(A) = 3, β равномерно распределена на отрезке [-1,1]. Найти математическое ожидание и дисперсию случайного процесса.

Вариант 5

- 1. Стационарен ли случайный процесс $x(t) = \cos(t + \varphi)$, где φ случайная величина, распределенная равномерно в интервале $(0,2\Pi)$?
- 2. Заданы математическое ожидание $m_x(t) = 3 + 4t$ и корреляционная функция $K_x(t,s) = 10\ell^{-2|s-t|}$ случайного процесса x(t). Найти математическое ожидание и корреляционную функцию интеграла $y(t) = \int_0^t x(s) ds$.
- 3. Определить корреляционную функцию производной стационарного случайного процесса x(t), если $K_x(\tau) = a \, \ell^{-\alpha|\tau|} (1 + \alpha |\tau|)$.

Вариант 6

- 1. Характеристики случайного процесса x(t) заданы выражениями $m_x(t) = 4t + 1$, $K_x(t,s) = 3\cos t \cos s$. Найти характеристики случайного процесса $y(t) = \int_0^t x(s) ds$.
- 2. Задан случайный процесс $x(t) = t + U \sin t + V \cos t$, где U и V случайные величины, причем M(U) = M(V) = 0, D(U) = D(V) = 5, M(UV) = 0. Доказать, что: а) x(t) нестационарный процесс; б) x'(t) -стационарный процесс.
- 3. Задана корреляционная функция $K_x(\tau) = 2\ell^{-0.5\tau^2}$ стационарного случайного процесса x(t). Найти корреляционную функцию и дисперсию производной x'(t).

- 1. Задана случайная функция $x(t) = U \ell^{3t} \cos 2t$, где U случайная величина, имеющая M(U) = 5, D(U) = 1. Найти математическое ожидание корреляционную функцию и дисперсию интеграла $y(t) = \int_0^t x(s) ds$.
- 2. Задан случайный процесс $x(t) = t^2 + U \sin t + V \cos t$, где U и V случайные величины, причем M(U) = M(V) = 0, D(U) = D(V) = 10, M(UV) = 0. Доказать, что: а) x(t) нестационарный процесс; б) x'(t) стационарный процесс.
- 3. Определить корреляционную функцию и дисперсию случайного процесса y(t) = x'(t), если $K_x(\tau) = a \, \ell^{-\alpha|\tau|} (\cos \beta \, \tau + \sin \beta |\tau|)$.

Вариант 8

2. Математическое ожидание и корреляционная функция случайного процесса x(t) заданы выражениями $m_x(t) = t + 4$, $K_x(t,s) = ts$. Найти математическое ожидание и корреляционную функцию случайного процесса y(t) = 5t x(t) + 2.

- 3. Случайный процесс x(t), $-\infty < t < +\infty$, задан формулой $\varsigma(t) = A \sin(\mu t + \alpha)$, где A и α независимые случайные величины, M(A) = 2, D(A) = 1, α равномерно распределена на отрезке $[-\Pi,\Pi]$. Найти математическое ожидание и дисперсию случайного процесса.
- 4. Стационарен ли случайный процесс $x(t) = \sin(t + \varphi)$, где φ случайная величина, распределенная равномерно в интервале $(0, 2\Pi)$?

- 1. Определить математическое ожидание и дисперсию случайной функции $\varsigma = At\cos(t+2\beta)$, где A и β независимые случайные величины, M(A) = 2 , D(A) = 1 , β -равномерно распределена на отрезке $[0,\Pi]$.
- 2. Характеристики случайного процесса x(t) заданы выражениями $m_x(t) = 4t + 1$, $K_x(t,s) = 3\cos t \cos s$. Найти характеристики случайного процесса $y(t) = \int_0^t x(s) ds$.
- 3. Стационарная последовательность $\{\xi_n\}$ имеет спектральную плотность $f(\lambda) = |5 \ell^{-i\lambda}|^2$. Найти оптимальный линейный прогноз на один шаг вперед.

Задачи для самостоятельной работы

Реализации случайного процесса

- 1. Построить семейство реализаций случайного процесса $\varsigma(t) = x \ell^{-t}, \quad t \ge 0,$ x-непрерывная случайная величина, имеющая равномерное распределение в интервале (-1,1).
- 2. Построить семейство реализаций случайного процесса $\varsigma(t) = \ell^{-tx}, \quad t \ge 0$, x случайная величина, принимающая только положительные значения.
- 3. Построить семейство реализаций случайного процесса $\varsigma(t) = at + x$, x-случайная величина, a- неслучайная величина.
- 3. Построить семейство реализаций случайного процесса $\varsigma(t) = xt + a, x$ случайная величина, a- неслучайная величина.
- 4. Построить семейство реализаций случайного процесса $\varsigma(t) = x \cos at$, x-случайная величина, a- неслучайная величина.

- 5. Построить семейство реализаций случайного процесса $\varsigma(t) = \cos Ut$, *U*-случайная величина, принимающая положительные значения.
- 6. Построить семейство реализаций случайного процесса $\varsigma(t) = U \cos at + V \sin at$, где U,V случайные величины, a неслучайная величина.

Характеристики случайных процессов

- 1. Определить математическое ожидание и дисперсию случайного процесса $\varsigma = At\sin(t+\beta)$, где A и β независимые случайные величины, M(A) = 1, D(A) = 2, β равномерно распределена на отрезке $[-\Pi,\Pi]$.
- 2. Определить математическое ожидание и дисперсию случайной функции $\varsigma = At\cos(t+2\beta)$, где A и β независимые случайные величины, M(A) = 2, D(A) = 1, β -равномерно распределена на отрезке $[0,\Pi]$.
- 3. Случайный процесс x(t), $-\infty < t < +\infty$, задан формулой $\varsigma(t) = A\cos(\varsigma t + 2\beta)$, где A и β независимые случайные величины, M(A) = 4, D(A) = 3, β равномерно распределена на отрезке $[0,\Pi]$. Найти математическое ожидание и дисперсию случайного процесса.
- 5. Случайный процесс x(t), $-\infty < t < +\infty$, задан формулой $\varsigma(t) = A \sin(t + \Pi \beta)$, где A и β независимые случайные величины, M(A) = 1, D(A) = 3, β равномерно распределена на отрезке [-1,1]. Найти математическое ожидание и дисперсию случайного процесса.
- 6. Случайный процесс x(t), $-\infty < t < +\infty$, задан формулой $\varsigma(t) = A \sin(\mu t + \alpha)$, где A и α независимые случайные величины, M(A) = 2, D(A) = 1, α равномерно распределена на отрезке $[-\Pi,\Pi]$. Найти математическое ожидание и дисперсию случайного процесса.
- 7. Определить математическое ожидание и дисперсию случайного процесса $\varsigma = A \sin(\varsigma t + \beta)$, где A и β независимые случайные величины, M(A) = 3, D(A) = 2, β -равномерно распределена на отрезке $[0,2\Pi]$.
- 8. Найти математическое ожидание корреляционную функцию и дисперсию случайного процесса $x(t) = U \sin t + V \cos t$, где U и V некоррелированные случайные величины, причем M(U) = 1, M(V) = 8, D(U) = 3, D(V) = 4
- 9. Математическое ожидание и корреляционная функция случайного процесса x(t) заданы выражениями $m_x(t) = t + 4$, $K_x(t,s) = ts$. Найти математическое ожидание и корреляционную функцию случайного процесса y(t) = 5t x(t) + 2.

Производная случайной функции и ее характеристики.

Интеграл от случайной функции и его характеристики.

- 1. Задана корреляционная функция $K_x(t,s) = \ell^{-(t-s)^2}$ случайного процесса x(t). Найти корреляционную функцию его производной.
- 2. Заданы математическое ожидание $m_x(t) = 4t^3$ и корреляционная функция $K_x(t,s) = 3\ell^{-4|s-t|}$ случайного процесса x(t). Найти математическое ожидание и корреляционную функцию интеграла $y(t) = \int_{0}^{t} x(s) ds$.
- 3. Заданы математическое ожидание $m_x(t) = 3 + 4t$ и корреляционная функция $K_x(t,s) = 10\ell^{-2|s-t|}$ случайного процесса x(t). Найти математическое ожидание и корреляционную функцию интеграла $y(t) = \int\limits_0^t x(s) ds$.
- 4. Задана случайная функция $x(t) = U \ell^{3t} \cos 2t$, где U случайная величина, имеющая M(U) = 5, D(U) = 1. Найти математическое ожидание корреляционную функцию и дисперсию интеграла $y(t) = \int_{-\infty}^{t} x(s) \, ds$.
- 5. Характеристики случайного процесса x(t) заданы выражениями $m_x(t) = 4t + 1$, $K_x(t,s) = 3\cos t \cos s$. Найти характеристики случайного процесса $y(t) = \int_0^t x(s) ds$.

Стационарные случайные процессы

- 1. Стационарен ли случайный процесс $x(t) = \cos(t + \varphi)$, где φ случайная величина, распределенная равномерно в интервале $(0, 2\Pi)$?
- 2. Стационарен ли случайный процесс $x(t) = \sin(2t + \varphi)$, где φ случайная величина, распределенная равномерно в интервале $(0,\Pi)$?
- 3. Стационарен ли случайный процесс $x(t) = \sin(t + \varphi)$, где φ случайная величина, распределенная равномерно в интервале $(0, 2\Pi)$?
- 4. Задан случайный процесс $x(t) = t + U \sin t + V \cos t$, где U и V случайные величины, причем M(U) = M(V) = 0, D(U) = D(V) = 5, M(UV) = 0. Доказать, что: а) x(t) нестационарный процесс; б) x'(t) -стационарный процесс.
- 5. Задан случайный процесс $x(t) = \cos(t + 2\varphi)$, где φ случайная величина, распределенная равномерно в интервале $(0,2\Pi)$. Доказать, что x(t) стационарный процесс.
- 6. Является ли стационарным случайный процесс $x(t) = U \sin t + V \cos t$, если U и V -некоррелированные случайные величины, причем M(U) = M(V) = 0, D(U) = D(V) = D > 0?

- 7. Задан случайный процесс $x(t) = t^2 + U \sin t + V \cos t$, где U и V случайные величины, причем M(U) = M(V) = 0, D(U) = D(V) = 10, M(UV) = 0. Доказать, что: а) x(t) нестационарный процесс; б) x'(t) стационарный процесс.
- 8. Будет ли стационарным случайный процесс $x(t) = a \sin(\omega t + \varphi)$, где a, ω положительные числа, φ случайная величина, плотность распределения которой $\rho(\varphi) = \cos \varphi$ в интервале $(0, \Pi/2)$?

Корреляционная функция

- 1. Определить корреляционную функцию производной стационарного случайного процесса x(t), если $K_x(\tau) = a \ell^{-\alpha|\tau|} (1 + \alpha |\tau|)$.
- 2. Определить корреляционную функцию и дисперсию случайного процесса y(t) = x'(t), если $K_x(\tau) = a \, \ell^{-\alpha|\tau|}(\cos \beta \, \tau + \sin \beta |\tau|)$.
- 3. Задана корреляционная функция $K_x(\tau) = 2\ell^{-0.5\tau^2}$ стационарного случайного процесса x(t). Найти корреляционную функцию и дисперсию производной x'(t).

VII. Материально-техническое обеспечение

Для аудиторной работы.

Учебная аудитория № 310	Комплект учебном мебели,
(170002, Тверская обл.,	меловая доска.
г.Тверь, Садовый	
переулок, д.35)	
Учебная аудитория № 304	Набор учебной мебели,
(170002, Тверская обл.,	экран,
г.Тверь, Садовый	комплект аудиотехники (радиосистема,
переулок, д.35)	стационарный микрофон с настольным
	держателем, усилитель, микшер, акустическая
	система),
	проектор,
	ноутбук.

Для самостоятельной работы.

Помещение для	Набор учебной мебели,
самостоятельной	компьютер,
работы	проектор.
Компьютерный класс	
№ 2 факультета ПМиК	
№ 249	

VIII. Сведения об обновлении рабочей программы дисциплины

№ п.п.	Обновленный раздел рабочей программы дисциплины	Описание внесенных изменений	Реквизиты документа, утвердившего изменения
1.	I. 3. Объем дисциплины	Выделение часов на практическую подготовку	От 29.10.2020 года, протокол № 3 ученого совета факультета
2.	II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий	Выделение часов на практическую подготовку по темам	От 29.10.2020 года, протокол № 3 ученого совета факультета
3.	11. 2) Программное обеспечение	Внесены изменения в программное обеспечение	От 29.09.2022 года, протокол № 2 ученого совета факультета
4.	13. Материально- техническое обеспечение	Внесены изменения в материально- техническое обеспечение аудиторий	От 29.09.2022 года, протокол № 2 ученого совета факультета